Multi-level Ground Glass Nodule Detection and Segmentation in CT Lung Images
نویسندگان
چکیده
Early detection of Ground Glass Nodule (GGN) in lung Computed Tomography (CT) images is important for lung cancer prognosis. Due to its indistinct boundaries, manual detection and segmentation of GGN is labor-intensive and problematic. In this paper, we propose a novel multi-level learning-based framework for automatic detection and segmentation of GGN in lung CT images. Our main contributions are: firstly, a multi-level statistical learning-based approach that seamlessly integrates segmentation and detection to improve the overall accuracy for GGN detection (in a subvolume). The classification is done at two levels, both voxel-level and object-level. The algorithm starts with a three-phase voxel-level classification step, using volumetric features computed per voxel to generate a GGN class-conditional probability map. GGN candidates are then extracted from this probability map by integrating prior knowledge of shape and location, and the GGN object-level classifier is used to determine the occurrence of the GGN. Secondly, an extensive set of volumetric features are used to capture the GGN appearance. Finally, to our best knowledge, the GGN dataset used for experiments is an order of magnitude larger than previous work. The effectiveness of our method is demonstrated on a dataset of 1100 subvolumes (100 containing GGNs) extracted from about 200 subjects.
منابع مشابه
طراحی سیستم کمک تشخیص کامپیوتری نوین به منظور شناسایی ندولهای ریوی در تصاویر سیتی اسکن
Background: Lung diseases and lung cancer are among the most dangerous diseases with high mortality in both men and women. Lung nodules are abnormal pulmonary masses and are among major lung symptoms. A Computer Aided Diagnosis (CAD) system may play an important role in accurate and early detection of lung nodules. This article presents a new CAD system for lung nodule detection from chest comp...
متن کاملA New Computer-Aided Detection System for Pulmonary Nodule in CT Scan Images of Cancerous Patients
Introduction: In the lung cancers, a computer-aided detection system that is capable of detecting very small glands in high volume of CT images is very useful.This study provided a novelsystem for detection of pulmonary nodules in CT image. Methods: In a case-control study, CT scans of the chest of 20 patients referred to Yazd Social Security Hospital were examined. In the two-dimensional and ...
متن کاملDetection of lung cancer using CT images based on novel PSO clustering
Lung cancer is one of the most dangerous diseases that cause a large number of deaths. Early detection and analysis can be very helpful for successful treatment. Image segmentation plays a key role in the early detection and diagnosis of lung cancer. K-means algorithm and classic PSO clustering are the most common methods for segmentation that have poor outputs. In t...
متن کاملGround-Glass-Opacity Nodule Detection and Segmentation Based on Dot Filter and Gaussian Mixture Model Hidden Markov Random Field
Aiming at solving the problem that ground-glass-opacity (GGO) nodules cannot be detected directly by “dot” filter, a method based on vessel elimination and “dot” filter was used to detect them. Because of spatial properties consideration, it is proposed to use hidden Markov random field based on Gaussian Mixture Model (GMMHMRF) and Expectation-Maximization (EM) algorithm to segment GGO nodule i...
متن کاملAnatomy packing with hierarchical segments: an algorithm for segmentation of pulmonary nodules in CT images
BACKGROUND This paper proposes a semantic segmentation algorithm that provides the spatial distribution patterns of pulmonary ground-glass nodules with solid portions in computed tomography (CT) images. METHODS The proposed segmentation algorithm, anatomy packing with hierarchical segments (APHS), performs pulmonary nodule segmentation and quantification in CT images. In particular, the APHS ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
دوره 12 Pt 2 شماره
صفحات -
تاریخ انتشار 2009